
ELSEVIER Nuclear Physics B (Proc. Suppl.) 83-84 (2000) 792-794

m m ~ ~

PROCEEDINGS
SUPPLEMENTS
www.elsevier.nl/locate/npe

Message passing on the QCDSP supercomputer
Michael Creutz a •

aphysics Department, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000, USA
creutz@bnl.gov

The QCDSP machines were designed for lattice gauge calculations. For planning it is crucial to explore this
architecture for other computationally intensive tasks. Here I describe an implementation of a simple message
passing scheme. With the objective being simplicity, I introduce a small number of generic functions for manipu-
lating a large data set spread over the machine. I test the scheme on three applications: a fast Fourier transform,
arbitrary dimension SU(N) pure lattice gauge theory, and the manipulation of Fermionic Fock states through a
distributed hash table. These routines compile both on QCDSP and a Unix workstation.

1. I n t r o d u c t i o n

The massively parallel QCDSP supercomput-
ers located at Columbia University and the
RIKEN/BNL Research Center [1] were explicitly
designed for large scale lattice gauge calculations.
The machines are primarily run with software
highly tuned tuned for four dimensional lattices
with an internal SU(3) gauge group. As such,
they have effectively been serving as special pur-
pose machines for a single problem.

An open question is whether whether this ar-
chitecture is sufficiently flexible for more general
tasks. With this in mind, as well as with a per-
sonal desire to explore the the machine, I devel-
oped a simple message passing scheme. My goal
is a small number of generic functions for manip-
ulation of a large data set spread over the entire
machine.

For a machine to be "general purpose" has two
prerequisites. First is a compiler in a higher level
language. This is provided by the optimizing Tar-
tan C / C + + compiler from Texas Instruments.

*This manuscript has been authored under contract num-
ber DF_rAC02-98CH10886 with the U.S. Department of
Energy. Accordingly, the U.S. Government retains a
non-exclusive, royalty-free license to publish or repro-
duce the published form of this contribution, or allow
others to do so, for U.S. Government purposes. The
RIKEN/BNL/Co lumbia collaboration members include
T. Blum, P. Chert, N. Christ , M. Creutz, C. Dawson,
G. Fleming, A. Kaehler, T. Klassen, C. Malureanu, R.
Mawhinney, S. Ohta, S. Sasaki, G. Siegert, C. Sui, A.
Soni, M. Wingate, P. Vranas, L. Wu, and Yu. Zhestkov

0920-5632/00/$ - see front matter © 2000 Elsevier Science B.V.
PII S0920-5632(00)00420-5

Second is an efficient communication scheme be-
tween the individual nodes. The rich software en-
vironment of the Riken/BNL/Columbia collabo-
ration provides this for the primary application of
the machine. In this mode the machine, while ca-
pable of MIMD operation, runs in a SIMD man-
ner. A high degree of tuning obtains excellent
performance, up to 30% of the theoretical peak
speed of the machine.

In contrast, the aim of the project described
here is a highly flexible communication package
for rapid prototyping of a variety of problems. In
the process, some efficiency loss is expected. I
hide the basic geometry of the machine from the
top level, and applications are developed entirely
in a higher level language. The source and more
details are available on the web [2]. The goal is
similar to but much less ambitious than the MPI
project [3].

2. Top level

My top level interface is designed with simplic-
ity as the primary goal. The usage begins with
the definition of a basic data type, and proceeds
with a small number of routines for manipulation
of a large assembly of objects of this type. For
example, in the case of lattice gauge theory the
data type might be SU(3) matrices. After the
basic type is defined, the communication pack-
age is included, making available several routines
to manipulate such objects. A call to the func-

All rights reserved.

M. Creutz/Nuclear Physics B (Proc. Suppl.) 83-84 (2000) 792-794 793

tion a l l o c a t e (n) sets up space for n items of this
type. The way the allocation is spread over the
processors is meant to be fully hidden. In the case
of lattice gauge theory one would allocate space
for the total number of links.

The scheme revolves about three basic func-
tions to manipulate the allocated objects. First
s t o r e (i , ~ item) stores the data item at the
i ' th allocated location. The complementary func-
tion f e t c h (i , & item) recovers the item. Any
processor can store or fetch any item, and need
not know on which processor it is stored.

After stacking up a number of stores or
fetches, all processors call a synchronizing func-
tion worksync (). This allows the communication
to proceed, with the data being passed until all
pending stores and fetches are completed. While
multiple stores/fetches can occur simultaneously,
there is no guarantee of the order in which events
are completed. When worksync() returns, the
machine is synchronized.

For efficient loops over the variables, it is useful
to know what data is stored on the current node.
This is accomplished with the boolean function
onnode (i) , which returns true if item i is local.

In addition to the basic interface, there are sev-
eral conveniences available. A variant of s to re (),
add(i , & item) adds the new item to whatever
is already stored in location i. This improves ef-
ficiency in eliminating the need to fetch the old
stored value, which could be on a distant proces-
sor. A variant of f e t c h () obtains multiple stored
items in parallel.

A few utility functions are included, such
as global sums and broadcasts. A function
cmalloc() attempts to malloc space in the fast
memory on the processor chip. These and similar
functions will presumably eventually be built into
the machine operating system.

To test these routines, I implemented a "fast
Fourier transform", a pure gauge code, and a
Grassmann integration routine involving manip-
ulation of large Fock spaces via hash table tech-
niques. The FFT code works by recursively sub-
dividing the lattice, giving each half to half the
remaining processors. Once a sub-lattice is as-
signed to only one processor, the procedure is a
standard FFT. After assigning the various tasks,

the results are combined, which involves heavy
communication. The dominance of communica-
tion makes the overall process discouragingly slow
compared to running on a workstation.

My pure gauge code is more satisfying, running
at about 2/3 the speed of the equivalent code of
the RIKEN/BNL/Columbia collaboration. How-
ever, it is extremely flexible, allowing an arbitrary
number of space time dimensions, each of arbi-
trary even size. The group is an arbitrary S U (N) .
Much of the communication speed is due to the
ability to fetch several neighbors at once using the
multiple fetch function.

The Grassmann integration implementation
works particularly well. The algorithm is based
on Ref. [4], and involves a large distributed hash
table, spread over all the processors. Each proces-
sor handles a portion of this table, sending stores
non-locally to randomly chosen other processors.
The efficiency is primarily due to the parallel na-
ture of the communication, and the fact that an
item in the process of being stored is not needed
for immediate computation. The primary limi-
tation of the algorithm is the exponentially large
amount of memory required, quickly exhausting
the limited amount on the current machine.

The distributed hash table uses simple ex-
tensions of the communications class. Instead
of a single data type, two are used. One,
hindex, is a type used to index the other,
an hvalue. After defining these classes, in-
cluding the file hashcom. C in turn includes the
communication routines. Storing an item uses
hs to re (hindex, hvalue), while fetching involves
the complementary hvalue h fe tch(h index) .
The function worksync() is used as before for
the communication to proceed. The storage is
random over the entire machine.

To manipulate the table, each processor han-
dles his local part. On storing, the final loca-
tion is unknown, but is not needed by the algo-
rithm. Parallel loops over the table are fast since
all operations are carried out locally and the non-
local storage proceeds in parallel. The processor
needs only occasionally check for active messages
to keep the communication running.

794 M. Creutz/Nuclear Physics B (Proc. Suppl.) 83-84 (2000) 792-794

3. Mid d le level

My goal was to keep the details of the commu-
nication as hidden from the top level as possible.
The data is passed around in messages, the ba-
sic message structure containing the identities of
the source and destination processors, one data
element, a verb to indicate what to do with the
data (store, fetch, acknowledge, error, etc.), and
an extra word for various purposes, such as to
carry the index of the element.

The machine architecture is a four dimensional
toroid with nearest neighbor serial connections.
While these are in principle bi-directional links,
for simplicity I always send messages in one of
the positive directions. Each processor listens for
incoming messages on the negative wires. Thus
any particular serial connection is used in only
one direction. The advantage is simplicity, while
the disadvantage is that the messages may not
follow the shortest path to their destination. A
store and acknowledge combination between dif-
ferent processors circles the machine.

Given a message, a lookup table determines
which wires lead closer to the destination. The
first free one is used. If none are free, the message
enters a queue. In this scheme all wires can be
simultaneously active. The route from one pro-
cessor to another is not predetermined, but pro-
gresses according to the currently available wires.

At this level, several internal functions appear.
First, senchae s s age () selects and activates a wire
to start a message traveling. If no wire is avail-
able, the message is put in a FIFO queue. The
complementary function readmessage() checks
the incoming wires for a completed transmis-
sion and forwards messages not for the current
processor. A function handlemessages() calls
readmessage() , performs any requested actions,
sends acknowledgements, and checks the message
queue. The function worksync() works by re-
peatedly calling handlemessages() until all un-
finished stores and fetches are completed.

4. B o t t o m level

The basic communication works through the
custom serial communication unit (SCU) of the

individual nodes. Program initialization fixes the
SCU registers for the message size and sets the
receive address registers to buffers in ram.

To send a message, a write to a send address
register starts the transfer. Monitoring progress
uses a poll of the SCU status register. This is all
implemented in C / C + + , without any assembly
language.

The function worksync() uses two (of three)
global interrupt lines available on the machine.
One flags unfinished stores/fetches. When this
line is set by all processors, a second interrupt
synchronizes the machine. I also currently use
the interrupt lines for global ands, broadcasts and
sums, but these will presumably eventually be re-
placed by operating system functions.

5. S u m m a r y

I have described a simple interface to the
QCDSP machines. The goal is rapid prototyping
of new ideas in a high level language. I compro-
mise efficiency for flexibility. For most problems
I expect a loss of a factor of 2 to 3 in speed. The
test examples show varying performance. The
FFT functions somewhat disappointingly; here
all the complexity is in non-local communication.
For a simple lattice gauge algorithm the approach
performs nicely, with more flexibility than in the
highly tuned production code. Remarkably, for
the Fock state manipulations involved in evalu-
ating Grassmann integrals, the performance was
excellent up to system sizes where inherent mem-
ory limitations appear.

R E F E R E N C E S

1. For an overview of the machine, see
"http://www.ccd.bnl.gov/riken_bnr'.

2. For the explicit details and programs, see
"http://thy.phy.bnl.gov/creutz/qcdsp/".

3. The MPI home page is at "http://www-
unix.mcs.anl.gov/mpi/".

4. M. Creutz, Phys. Rev. Lett. 81 (1998)
3555, hep-lat/9806037; M. Creutz, Nucl.
Phys. (Proc. Suppl.) 73 (1999) 819, hep-
lat/9809024.

